A memory for extracellular Ca2+ by speeding recovery of P2X receptors from desensitization.

نویسندگان

  • S P Cook
  • K D Rodland
  • E W McCleskey
چکیده

Nerve endings of nociceptors (pain-sensing neurons) express an unusual subtype of ATP-gated ion channel, the P2X3 receptor, that rapidly desensitizes (<100 msec) and slowly recovers (>20 min). Here we show that Ca2+, or certain other polyvalent cations, binds to an extracellular site on rat sensory neurons and can increase current through P2X3 channels more than 10-fold. Importantly, Ca2+ facilitates P2X3 current to precisely the same level whether a transient Ca2+ change occurred just before or several minutes before activating the channels with ATP. This memory for past changes in Ca2+ is integrative in that a 90 sec Ca2+ stimulus delivered just before an ATP application has the same effect as an earlier series of three, separated 30 sec Ca2+ stimuli. These diverse phenomena are explained by a single mechanism: Ca2+ speeds recovery of P2X channels from desensitization. Recovery follows an exponential growth curve that depends on the duration, but not the timing, of changes in recovery rate. Modulation of desensitization underlies a well described short-term memory in bacteria, and it might be similarly used in the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice.

P2X receptors are highly expressed throughout the nervous system, where ATP has been shown to be a neurotransmitter. The aim of this study was to characterize P2X receptor expression within sympathetic postganglionic neurons from the superior cervical ganglia. Reverse transcription-polymerase chain reaction showed the presence of mRNA for all P2X receptors, raising the possibility of multiple s...

متن کامل

Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation

BACKGROUND Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca2+]i signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and ...

متن کامل

Regulation of nicotinic acetylcholine receptor desensitization by Ca2+.

The relationship between the concentration of intracellular Ca2+ ([Ca2+](i)) and recovery from desensitization of nicotinic acetylcholine receptors (nAChRs) in rat medial habenula (MHb) neurons was investigated using the whole cell patch-clamp techniques in combination with microfluorescent [Ca2+](i) measurements. Recovery from desensitization was assessed with a paired-pulse agonist applicatio...

متن کامل

Kinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors.

ATP acts as an extracellular signaling molecule at cell-surface P2X receptors, mediating a variety of important physiologic and pathophysiologic roles. Homomeric P2X1 receptors open on binding ATP and then transition to an ATP-bound closed, desensitized state that requires an agonist-free washout period to recover. Voltage-clamp fluorometry was used to record ion channel activity and conformati...

متن کامل

Desensitization properties of P2X3 receptors shaping pain signaling

ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called "high affinity desensitization." We have also observed th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 22  شماره 

صفحات  -

تاریخ انتشار 1998